Speed up learning and network optimization with extended back propagation

نویسندگان

  • Alessandro Sperduti
  • Antonina Starita
چکیده

Methods to speed up learning in back propagation and to optimize the network architecture have been recently studied. This paper shows how adaptation of the steepness of the sigmoids during learning treats these two topics in a common framework. The adaptation of the steepness of the sigmoids is obtained by gradient descent. The resulting learning dynamics can be simulated by a standard network with fixed sigmoids and a learning rule whose main component is a gradient descent with adaptive learning parameters. A law linking variation on the weights to variation on the steepness of the sigmoids is discovered. Optimization of units is obtained by introducing a tendency to decay to zero in the steepness values. This decay corresponds to a decay of the sensitivity of the units. Units with low final sensitivity can be removed after a given transformation of the biases of the network. A decreasing initial distribution of the steepness values is suggested to obtain a good compromise between speed of learning and network optimization. Simulation of the proposed procedure has shown an improvement of the mean convergence rate with respect to the standard back propagation and good optimization performance. Several 4-3-1 networks for the four bits parity problem were discovered.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Comparative Analysis of Machine Learning Algorithms with Optimization Purposes

The field of optimization and machine learning are increasingly interplayed and optimization in different problems leads to the use of machine learning approaches‎. ‎Machine learning algorithms work in reasonable computational time for specific classes of problems and have important role in extracting knowledge from large amount of data‎. ‎In this paper‎, ‎a methodology has been employed to opt...

متن کامل

A novel fast learning algorithms for time-delay neural networks

To counter the drawbacks that Waibel 's time-delay neural networks (TDW) take up long training time in phoneme recognition, the paper puts forward several improved fast learning methods of 1PW. Merging unsupervised Oja's rule and the similar error back propagation algorithm for initial training of 1PhW weights can effectively increase convergence speed, at the same time error firnction almost m...

متن کامل

Neural Network Performance Analysis for Real Time Hand Gesture Tracking Based on Hu Moment and Hybrid Features

This paper presents a comparison study between the multilayer perceptron (MLP) and radial basis function (RBF) neural networks with supervised learning and back propagation algorithm to track hand gestures. Both networks have two output classes which are hand and face. Skin is detected by a regional based algorithm in the image, and then networks are applied on video sequences frame by frame in...

متن کامل

An analysis of performance of feed forward neural network: using back propagation learning algorithm

In some practical applications Neural Network (NN), a fast response to external events within extremely short period is required. However, using back propagation (BP) based on gradient descent optimization method obviously not satisfy many applications because of serious problems with BP are slow convergence speed of learning and containment low minima. Over the years, many improvements and mod...

متن کامل

A New Strategy for Training RBF Network with Applications to Nonlinear Integral Equations

A new learning strategy is proposed for training of radial basis functions (RBF) network. We apply two different local optimization methods to update the output weights in training process, the gradient method and a combination of the gradient and Newton methods. Numerical results obtained in solving nonlinear integral equations show the excellent performance of the combined gradient method in ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Neural Networks

دوره 6  شماره 

صفحات  -

تاریخ انتشار 1993